524 research outputs found

    Air quality assessment for Portugal

    Get PDF
    According to the Air Quality Framework Directive, air pollutant concentration levels have to be assessed and reported annually by each European Union member state, taking into consideration European air quality standards. Plans and programmes should be implemented in zones and agglomerations where pollutant concentrations exceed the limit and target values. The main objective of this study is to perform a long-term air quality simulation for Portugal, using the CHIMERE chemistry-transport model, applied over Portugal, for the year 2001. The model performance was evaluated by comparing its results to air quality data from the regional monitoring networks and to data from a diffusive sampling experimental campaign. The results obtained show a modelling system able to reproduce the pollutant concentrations' temporal evolution and spatial distribution observed at the regional networks of air quality monitoring. As far as the fulfilment of the air quality targets is concerned, there are excessive values for nitrogen and sulfur dioxides, ozone also being a critical gaseous pollutant in what concerns hourly concentrations and AOT40 (Accumulated Over Threshold 40 ppb) values

    Aerosol chemical and optical properties over the Paris area within ESQUIF project

    Get PDF
    Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environments against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce the plume structure and location fairly well both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirm the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicates that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated by about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%), and inorganic aerosol fraction (40%) including nitrate (8%), sulfate (22%) and ammonium (10%). The secondary organic aerosols (SOA) represent 12% of the total aerosol mass, while the mineral dust accounts for 8%. The comparison demonstrates the absence of systematic errors in the simulated sulfate, ammonium and nitrates total concentrations. However, for nitrates the observed partition between fine and coarse mode is not reproduced. In CHIMERE there is a clear lack of coarse-mode nitrates. This calls for additional parameterizations in order to account for the heterogeneous formation of nitrate onto dust particles. Larger discrepancies are obtained for the secondary organic aerosols due to both inconsistencies in the SOA formation processes in the model leading to an underestimation of their mass and large uncertainties in the determination of the measured aerosol organic fraction. The observed mass distribution of aerosols is not well reproduced, although no clear explanation can be given

    Nonlinear projective filtering in a data stream

    Full text link
    We introduce a modified algorithm to perform nonlinear filtering of a time series by locally linear phase space projections. Unlike previous implementations, the algorithm can be used not only for a posteriori processing but includes the possibility to perform real time filtering in a data stream. The data base that represents the phase space structure generated by the data is updated dynamically. This also allows filtering of non-stationary signals and dynamic parameter adjustment. We discuss exemplary applications, including the real time extraction of the fetal electrocardiogram from abdominal recordings.Comment: 8 page

    Interannual prediction of the Paraná River

    Get PDF
    Interannual‐to‐decadal predictability of the Paraná river in South America is investigated by extracting near‐cyclic components in summer‐season streamflows at Corrientes over the period 1904–1997. It is found that oscillatory components with periods of about 2–5, 8 and 17 years are accompanied by statistically significant changes in monthly streamflow. Autoregressive predictive models are constructed for each component. Cross‐validated categorical hindcasts based on the 8‐yr predicted component are found to yield some skill up to four years in advance for below‐average flows. A prediction based upon the 8‐ and 17‐yr components including data up to 1999 suggests increased probability of below‐average flows until 2006

    Near Real-Time Data Labeling Using a Depth Sensor for EMG Based Prosthetic Arms

    Full text link
    Recognizing sEMG (Surface Electromyography) signals belonging to a particular action (e.g., lateral arm raise) automatically is a challenging task as EMG signals themselves have a lot of variation even for the same action due to several factors. To overcome this issue, there should be a proper separation which indicates similar patterns repetitively for a particular action in raw signals. A repetitive pattern is not always matched because the same action can be carried out with different time duration. Thus, a depth sensor (Kinect) was used for pattern identification where three joint angles were recording continuously which is clearly separable for a particular action while recording sEMG signals. To Segment out a repetitive pattern in angle data, MDTW (Moving Dynamic Time Warping) approach is introduced. This technique is allowed to retrieve suspected motion of interest from raw signals. MDTW based on DTW algorithm, but it will be moving through the whole dataset in a pre-defined manner which is capable of picking up almost all the suspected segments inside a given dataset an optimal way. Elevated bicep curl and lateral arm raise movements are taken as motions of interest to show how the proposed technique can be employed to achieve auto identification and labelling. The full implementation is available at https://github.com/GPrathap/OpenBCIPytho

    Karhunen-Lo`eve Decomposition of Extensive Chaos

    Full text link
    We show that the number of KLD (Karhunen-Lo`eve decomposition) modes D_KLD(f) needed to capture a fraction f of the total variance of an extensively chaotic state scales extensively with subsystem volume V. This allows a correlation length xi_KLD(f) to be defined that is easily calculated from spatially localized data. We show that xi_KLD(f) has a parametric dependence similar to that of the dimension correlation length and demonstrate that this length can be used to characterize high-dimensional inhomogeneous spatiotemporal chaos.Comment: 12 pages including 4 figures, uses REVTeX macros. To appear in Phys. Rev. Let

    Attribution of human-induced dynamical and thermodynamical contributions in extreme weather events

    Get PDF
    This is the final version. Available on open access from IOP Publishing via the DOI in this recordWe present a new method that allows a separation of the attribution of human influence in extreme events into changes in atmospheric flows and changes in other processes. Assuming two data sets of model simulations or observations representing a natural, or 'counter-factual' climate, and the actual, or 'factual' climate, we show how flow analogs used across data sets can provide quantitative estimates of each contribution to the changes in probabilities of extreme events. We apply this method to the extreme January precipitation amounts in Southern UK such as were observed in the winter of 2013/2014. Using large ensembles of an atmospheric model forced by factual and counterfactual sea surface temperatures, we demonstrate that about a third of the increase in January precipitation amounts can be attributed to changes in weather circulation patterns and two thirds of the increase to thermodynamic changes. This method can be generalized to many classes of events and regions and provides, in the above case study, similar results to those obtained in Schaller et al (2016 Nat. Clim. Change 6 627-34) who used a simple circulation index, describing only a local feature of the circulation, as in other methods using circulation indices (van Ulden and van Oldenborgh 2006 Atmos. Chem. Phys. 6 863-81).European Union FP7French Ministry of EcologyEuropean Research Council (ERC

    Air quality in the mid-21st century for the city of Paris under two climate scenarios; from the regional to local scale

    Get PDF
    Ozone and PM<sub>2.5</sub> concentrations over the city of Paris are modeled with the CHIMERE air-quality model at 4 km × 4 km horizontal resolution for two future emission scenarios. A high-resolution (1 km × 1 km) emission projection until 2020 for the greater Paris region is developed by local experts (AIRPARIF) and is further extended to year 2050 based on regional-scale emission projections developed by the Global Energy Assessment. Model evaluation is performed based on a 10-year control simulation. Ozone is in very good agreement with measurements while PM<sub>2.5</sub> is underestimated by 20% over the urban area mainly due to a large wet bias in wintertime precipitation. A significant increase of maximum ozone relative to present-day levels over Paris is modeled under the "business-as-usual" scenario (+7 ppb) while a more optimistic "mitigation" scenario leads to a moderate ozone decrease (−3.5 ppb) in year 2050. These results are substantially different to previous regional-scale projections where 2050 ozone is found to decrease under both future scenarios. A sensitivity analysis showed that this difference is due to the fact that ozone formation over Paris at the current urban-scale study is driven by volatile organic compound (VOC)-limited chemistry, whereas at the regional-scale ozone formation occurs under NO<sub>x</sub>-sensitive conditions. This explains why the sharp NO<sub>x</sub> reductions implemented in the future scenarios have a different effect on ozone projections at different scales. In rural areas, projections at both scales yield similar results showing that the longer timescale processes of emission transport and ozone formation are less sensitive to model resolution. PM<sub>2.5</sub> concentrations decrease by 78% and 89% under business-as-usual and mitigation scenarios, respectively, compared to the present-day period. The reduction is much more prominent over the urban part of the domain due to the effective reductions of road transport and residential emissions resulting in the smoothing of the large urban increment modeled in the control simulation
    corecore